Luleå tekniska universitet
hemsidan sök kontakta oss student
Studiehandboken 01/02


Systemteknik

SMD127 Learning with Baysian Network 5.0 poäng

ÄMNE (enl SCB)
Datateknik

NIVÅ/DJUP
B G

PROGRAM/TIDSPERIOD
/ Lp 3, vt03

SPRÅK: Engelska

EXAMINATOR
Ramin Yasdi Univ lekt

FASTSTÄLLD
Kursplanen är fastställd av Institutionen för systemteknik 2001-09-24, att gälla från HT2001.

FÖRKUNSKAPSKRAV
B-level, knowledge in Machine Learning is useful.

SYFTE/MÅL
To present foundations of methods and algorithms in the area of Bayesian Learning

INNEHÅLL
A Bayesian network is a graphical model that encodes relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, it readily handles situations where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequences of intervention. Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical method in conjunction with Bayesian networks offer an efficient and principled approach for avoiding the over fitting of data.

UNDERVISNING
Lecture and project.

EXAMINATION
On project work.
KURSENS BETYGSKALA: 3 4 5

MOMENT/PROV
Projekt 5.0poäng

LITTERATUR
An Introduction to Bayesian Networks, Finn V.Jensen, UCL Press, 96

Kontaktperson: Ramin Yasdi

Ytterligare kursinformation:
http://www.sm.luth.se/~yasdi

Gäller för läsåret 01/02.
Ansvarig för sidan: Karin.Lindholm@dc.luth.se

Universitetet | Student | Forskning | Sök | Kontakta oss | In English


LULEÅ TEKNISKA UNIVERSITET
Universitetsområdet, Porsön, 971 87 Luleå. Tel. 0920-91 000, fax 0920-91 399
Last edited 2001-12-17